Undocumented Express

William G. Brown
Senior Consulting, Symmetry Corp.

This articlefirst appeared in Oracle Internals, February 2000.

In 1995, Oracle Corporation realized that their product offerings lacked the functionality of a
multidimensional database. Moving quickly to fill this critical need, they examined writing a new
multidimensional database while evaluating the major multidimensional vendors' offerings. The purchase
of the Express multidimensional database and applications from Information Resources, Inc. made them a
market |eader in the growing business intelligence market.

Express has greatly expanded Oracle' s ability to deliver business intelligence to the user community.
Coupled with Oracle' s strong relational database and query tools, Express and its related applications
(Oracle Sales Analyzer and Oracle Financial Analyzer) fill acritical gap in Oracle’ s solution for on-line
analytical processing.

Express strength liesin itsflexibility of design and rich Stored Procedure Language (SPL). What follows
Isadescription of aseries of undocumented Express tips and functions | have found useful over the years
precisely because they take advantage of Express’ flexibility.

Undocumented Express Tips and Functions
The tips and functions can be classified into these nine categories:

. MCALC

. Worksheets

. Timedimensions

. TCONVERT

. Capstones

. XCA

. Faster SQL-based loaders
. Custom functions

. Conjoints

MCALC

MCALC is an undocumented function in Express written for Oracle Sales Analyzer (OSA). While
officially MCALC isonly supported with OSA, devel opers have used it for years in custom Express
applicationsaswell. MCALC is used to calculate custom aggregates; i.e., user defined dimension members
that have not been pre-calculated.

The MCALC function is attached to aformula that the users will access for reporting. There are five

mailto:wgbrown@symcorp.com
http://www.symcorp.com/
http://www.auerbach-publications.com/ejournals/issues/issue_archive.asp?section=1075

Undocumented Express
componentsto MCALC: variable, screenby, method, members, and weight.
The basic syntax for MCALC has the following format:

MCALC(vari abl e, SCREENBY bool ean net hod OF nenbers, WEI GHTBY wei ght)

An example that uses the MCALC syntax follows.

define F.SALES formul a deci nal <G=EOG PRCD TI ME>
Eq MCALC(v.sal es, SCREENBY if V.SALES eq NA THEN NO el se YES, TOTAL of
MEMBERS. G TOTAL of MEMBERS. P, TOTAL of MEMBERS. T)

Now let’slook at each MCAL C component, its definition, and a specific example for each component.
Variable

The data variable (or formula) users are reporting on. For example:

defi ne V. SALES vari abl e deci nal
<PRODGEOG <PROD GEOG> TI ME>

Screenby

Thisisan optional variable or formulathat controls the handling of NA’s and calculations. Information
Resources, Inc. added SCREENBY to OSA before OSA was acquired by Oracle. SCREENBY supports the
type of census data |nformation Resources sells and is normally used to distinguish a product that is
unavailable in a market from a product that is not sold in a market. Generally, in custom applications this
option is set to return aNO if the variableisNA and YES if the variable is not NA. For example:

SCREENBY if V. SALES eq NA then NO el se YES

This setting will alow custom aggregates to be calculated, but NA’swill be reported as NA’s and will not
be converted to ZERO on reports. However, if any cell of a custom aggregate is NA, the custom aggregate
will be NA.

Method

Six methods are available to calculate a custom aggregate. The possible values for METHOD are:
AVERAGE, FIRST, LAST, LARGEST, TOTAL and NONADD.

. AVERAGE: A simple or weighted average (see option WEIGHTBY).

. FIRST: Thefirst value in the member list. Thisistypically used with time dimensions.

« LAST: Thelast value in the member list. Thisistypically used with time dimensions.

. LARGEST: The largest value from the member’slist. If al values are negative, MCALC returns a

Undocumented Express

Zero.
. TOTAL: Sums the values from the member’slist.
. NONADD: Returns NA in all cases.

Member List

Thisisatext variable dimensioned by one of the formula s base dimensions. For pre-calculated dimension
members, this variable contains an NA value. For custom aggregates, this variable contains alist of
dimension members that will be used to calculate the aggregate value. For example:

defi ne MEMBERS. P vari abl e text <PROD>
limt PROD to ‘ MYCUSTAGG

rpr down PROD MEMBERS. P

PROD MEMBERS. P

MYCUSTAGG PRCD Bl KE

PROD_CAR
PROD_WAGON

If the Express option MCALCINT isset to YES (default), Express expects integer val ues representing
dimension member positions. | recommend setting MCALCINT to NO and using dimension membersin
the member list. In the above example, the custom aggregate MY CUSTAGG is made up of dimension
members PROD_BIKE, PROD_CAR, and PROD_WAGON, instead of the integer values 1,2, and 3 that
would have been the default values had MCALCINT been set to YES. Thisway, as new members are
added, the member list does not have to be updated to reflect possible changes in the order of the dimension
members,

Weightby
Thisisan optional variable or formulathat allows for weighted averages. Omitting this argument assigns
al dimension members aweight of one. If aweight isNA, it is omitted from the custom aggregate. If

WEIGHTBY isused, the following formulais used to calculate the average:

Sum of (wei ght *val ue*si gn of the nunber)/
sum of (wei ght * sign)

MCALC isacomplex function. If you wish to use MCALC, please experiment with it until you fully
understand its abilities and limitations. In the meantime, to help you get started, below I’ ve listed several
MCALC limitations and some methods to mitigate them.

Dynamic Member Lists

Once built, a member list is static and remains unchanged until someone manually updatesit. To generate a
dynamic member list, you can use aformula. Thisisuseful in situations where there are two sources for the

Undocumented Express

member list, such as a system where some members on the member list were generated by the system and
other members were generated by an end user.

We can fool MCALC using Express' versatile text manipulation tools. For example,

Define MEMBERS. P fornul a text <PROD>
Eg uni quel i nes(j oi nli nes(USERVEM P, SYSMEM P))

Display of NA’'s and ZEROS

Discussed briefly in the SCREENBY section of this article, the display of NA’s and zerosis often
confusing with MCALC. Using the SCREENBY option, MCALC can either:

. Trandate all NA’sto ZERO, which trandates all NA’s on areport to zeros. NA and ZERO have
considerably different meanings so this behavior is not desirable.

. Not trandate NA to ZERO, however if any member in the custom aggregate is NA, the custom
aggregate will result in an NA.

. Treat NA as ZERO only for custom aggregates, which provides a solution that combines the best of
both options by allowing you to report NA’sas NA’s and correctly calculate custom aggregates
using zeros when appropriate.

Using the example from the members list section above, we can illustrate each of the above behaviors:
Translate all NA’s to ZERO

df n F. SALES ZERO formul a dec <PRCD GEOCG Tl Me>
eq Eq MCALC(v. sal es, TOTAL of MEMBERS. G TOTAL of MEMBERS. P, TOTAL of

MEMBERS. T)

Ror down PROD F. SALES ZERO
PROD F. SALES_ZERO

PROD_BI KE 10

PROD_CAR 20

PROD_WAGON 0
MYCUSTAGG 30

Don’t translate NA to ZERO, to show there is no data for PROD_WAGON in the SALES cube

df n F. SALES_NOZERO fornul a dec <PROD GEOG TI ME>
eq Eq MCALC(v. sal es, SCREENBY if V.SALES eq NA THEN NO el se YES, TOTAL of

MEMBERS. G TOTAL of MEMBERS. P, TOTAL of MEMBERS. T)
rpr down PROD F. SALES NOZERO

PROD F. SALES NOZERO

PRCD_BI KE 10

PROD_CAR 20

Undocumented Express

PROD_WAGON NA
MYCUSTAGG NA

Treat NA as ZERO only for custom aggregates by changing the formula so the MCALC function is not
required until a custom aggregate is calculated

Dfn f.sales formul a dec <PROD GEOG TI ME>
eq if MEMBERS. P ne na or MEMBERS. G ne na

or MEMBERS. T ne na -
then F. SALES_ZERO el se V. SALES

If a custom aggregate is not being calculated, the formula returns the data from the variable, otherwise
MCALC calculates the custom aggregate treating NA as ZERO.

WORKSHEETS

Worksheets are an old Express feature originally used to import and export data to L otus spreadsheets.
While they have not been enhanced to handle Excel or other spreadsheets, they have some interesting and
useful properties.

A worksheet is atwo-dimensional object. Unlike other Express objects, each worksheet cell can contain
different data types. The WKSDATA function is used to determine which data typeisin each cell.
Worksheets are useful to buffer or store data when you are uncertain of the data type.

TIME DIMENSIONS

Usually, time dimensions are just standard text dimensions that use application code to enforce special
rules. When the administrator defines atime dimension, a series of objects are created that allow Express to
properly calculate time series data (LAG, YTD). However, Express has the ability to define ‘true’ time
dimensions that have an implicit knowledge of time. These time dimensions are broken into homogeneous
pieces, with adimension for each level in ahierarchy (such as MONTH, QUARTER and YEAR).

Time dimensions have many properties that an application designer might wish to use. Often, time
dimensions are used to control and populate traditional text dimensions for reporting time periods. Time
dimensions have implicit relations: a developer can limit months to year without a defined relation.

For example,

Limt YEAR to ‘ YROY’
Limt MONTH to YEAR

will result in the 12 months of 1999.

Undocumented Express

Because true time dimensions are homogenous, they only store one level of data, and proper order is
maintained you can easily find equivalent periods using positional logic. For example, to find atime period
one year ago,

Limt nmonth to ‘ DEC99’
Limt nonth to nonth-12

Using this method, the code returns DEC98. Compare this to using a text time dimension, whichis
heterogeneous. Unless you are careful with your code, 12 members back could be any time period.

Sometimes time hierarchies are not easily derived from the source system, or time information such as Day
of Week is not available. It can be faster to ssimply maintain the time dimensions in Express. For
maintaining atext time dimension, Express has a number of useful functions with implicit relations
describing time dimensions, including:

DAY OF: Day of Week for adate
DDOF: Day of Month for a date
MMOF: Month of adate

Using time dimensions, we can also design smaller and more efficient databases using TCONVERT.
TCONVERT

The TCONVERT function allows data to be aggregated or alocated from one time dimension to another,
thereby reducing the size of the database considerably. For example, a sales system with two years of
monthly level data normally requires 8 quarters and 2 years of pre-calculated data, making atime
dimension of 34 members. Using TCONVERT, we reduce the size of the dimension to 24-month members,
with a corresponding reduction in size of the cubes. In addition, TCONVERT supports average and |ast
value as aggregation methods.

Although alocations are rarely used, TCONVERT also supports spreading data down to lower levels from
higher levels. This can be useful if quotais set at the quarter level but users want to compare their current
sales against their quarterly quotas.

Using TCONVERT adds some complexity to the database, but the complexity can be completely hidden
from the end users. Continuing with above sales example, we can define the following:

Define MONTH di nensi on nonth

Def i ne QUARTER di mensi on quarter

Define YEAR di nensi on year

Define V. SALES vari abl e deci nal <PRODGEOCG <PROD GEOG> MONTH>

Ld Where the data is stored
Defi ne Q SALES fornul a deci mal <PRODGEOG <PROD GEOG> QUARTER>

Eq TCONVERT(V. SALES, QUARTER, SUM

Undocumented Express

Define Y. SALES fornula deci mal <PRODGEOCG <PROD GEOG> YEAR>
Eq TCONVERT(V. SALES, YEAR, SUM

None of these objects will be visible to the end user. Define the following formulafor the end user:

Defi ne F. SALES fornul a deci mal <PROD CGECG Tl ME>
eq if isvalue(TIME YEAR) then Y.SALES(YEAR TIME) el se

If isvalue(TlI ME QUARTER) then Q SALES(QUARTER TI ME)
else if I SVALUE(TI ME MONTH) then V. SALES(MONTH Tl MVE) el se na

Now, users have atext time dimension with embedded totals, but the aggregate numbers are calculated
dynamically. Performance of TCONVERT isdirectly related to the amount of data being calculated. For
example, ayear value calculated from monthsis considerably faster than one calculated from days.

The formulathat presents the data to the end user haslittle or no overhead. Both F.SALES and V.SALES
demonstrate identical performance characteristics for stored data.

Capstones

Currently, Expressis not a multi-processor database. Capstones are a technique of physically partitioning
the databases to allow parallel processing. Although capstones add to the database complexity, there can be
vast performance improvements.

There are two issues in using capstones as a design technigue: how to physically separate the data and how
to logically integrate it for transparent reporting.

Physically separating the datais the most challenging. However, there are some simple guidelinesto
follow.

. Split the data to avoid duplication of derived or input data.

. Split measures among databases only when the databases have different dimensionality or different
densities.

. Split by time periods only when forced to by tight load windows.

Integrating the data requires afairly simple set of formulas. The formulas are very similar to those givenin
the TCONVERT example above for creating a user accessible formula. Use the ISVALUE function on
each dimension to determine the data’ s location. If we assume the SALES data is split into two pieces, we
can use the following formula:

Dfn F. SALES FORMULA DECI MAL <PROD GECG TI ME>

Eq if isvalue(DBl_PROD PROD) and isval ue(DBl_GEOG GEOG and i sval ue(DB1_TI ME
Tl ME)

then DB1_SALES(DB1_PROD PROD DB1_CGEOG GEOCG DB1_TI ME TI ME)

el se if isvalue(DB2_PROD PROD) and isval ue(DB2_GEOG GEOG) and i sval ue
(DB2_TI ME TI ME)

Undocumented Express

then DB2_SALES(DB2_ PROD PROD DB2_CGEOG GECG DB2_TI ME TI ME)
el se na

define DB1_SALES VARI ABLE DECI MAL <DB1_PROD DBl _GEOG DB1_TI ME>
defi ne DB2_SALES VARI ABLE DECI MAL <DB2_ PROD DB2_GEOG DB2_TI ME>

No matter how the databases are split, there appears to be no performance penalty using this approach.

In larger applications utilizing both TCONVERT and capstone functions, placing the TCONVERT
formulas in the data databases and not in the capstone database will provide the best performance.

XCA

Express Communication Architecture (XCA) is Express' original method of communicating between a
client and a server. With the release of Express Server 5.0, this communication method was replaced with
Structured N-Dimensional Programming Interface (SNAPI). However, XCA has the following useful
features:

. Using the pipeline option, you can move database objects directly from database to database without
resorting to EIF files.

. Server to server connections can be established, alowing data, programs, and files to be moved from
server to server.

. Using Personal Express, data can be sliced down to fit on a client machine and run in disconnect
mode.

In Express Server 6.2 anew set of XCA functions were released to support Oracle Financial Analyzer.

EXECSTART alows you to issue acommand to another Express database while continuing to process the
first database. Using XCA you can attach another database and move a cube of data. EXECSTART will
allow you to rollup the data and then bring the calcul ated data back to the primary database.

A code fragment using this technique follows:

cd /dat abasedir
dtb attach data.db rw
"Initiate the secondary session

conset type local "Connect to the sane machi ne you are on
connect

xopen " Open XCA port

" In the secondary session, attach database read-only
execute 'cd /databasedir

execute 'dtb ro data. db’'

" In the secondary session, rollup sales dollar variable
execstart 'call ROLLUP_PRG\' SALES DOL\')'

Undocumented Express

" At the same tinme rollup the sales unit variable
call rollup_prg(' SALES_UNT")
upd
In the primary session, attach and detach the
' database in order to clear Express nenory
dtb detach acne
dtb attach acne rw
" Wait for the secondary rollup. Test for errors.
trap on errwait
Xca_err = execwait

trap off
In the secondary session, export the sales dollar cube back to the primary

sessi on

execute 'export SALES DOL to eif pipeline
upd

dtb detach acne

xcl ose

di sconnect

return

errwait:

"Handl e the execwait error

return
END

The advantage of XCA over capstones is that the database design and code stream is simpler. However,
moving the data from the secondary session to the primary session can be slow. This process works best
with alarger number of smaller cubes.

Y ou can create more than one secondary session by specifying a session number. Y ou should only create as
many sessions as you have available CPU’ s and adequate memory to support the process.

Faster SQL-Based Data Loaders

Express can read data from arelational database. However, it can be slower than reading from flat files
because Express requires two passes through the data. The first pass maintains the dimensions and the
second pass loads the data. Skipping the two-pass approach will save some processing time but will cause
the database to become disorganized.

If performance is an issue, you can write a SQL -based data load program that makes one pass through the
data. The program performs all the dimension maintenance and buffers the data. As a post processin the
program, the datais copied into the cubes, avoiding a second pass. My benchmarking indicates that thisis
asfast as creating adatafile and writing atraditional flat file loader.

Undocumented Express

Below is a code example:

Nanme: READ_SALES

Description: Sinple exanple of buffered SQ. data | oader

|
I
I
|
"| Aut hor: WGEBROM (Symretry)
I
| Date: 05/07/98

I

I

Dat e Who Change

arg _nonth date
vrb _tinme text
vrb _geog text
vrb _prod text
vrb _cnt int
vrb _sec int
vrb _sal es dec
trap on error
call prg_init(' READ_SALES')
pushl evel ' READ_SALES
trap on error
Define all the buffer objects required for the database
if not exists('REC)
t hen define REC DI MENSI ON | NT dat abase BASE
if not exists('REC_MONTH)
then define REC_ MONTH rel ati on MONTH <REC> DATABASE BASE tenp
if not exists('REC_STORE')
then defi ne REC STORE RELATI ON STORE <REC> DATABASE BASE tenp
if not exists('REC PROD)
t hen defi ne REC_PROD RELATI ON STORE <REC> DATABASE BASE tenp
i f not exists('REC SALES)
t hen defi ne REC SALES DEC <REC> DATABASE BASE tenp
"add a 5000 di nmension nenbers to store the data.
mt rec dlt all
mt rec add 5000

Undocumented Express

call prg_nsgs(joinchars('Starting SALES for ' _day))
_cnt=0

_sec=seconds

sql declare cl cursor for -

sel ect MONTH, GEOCG, PROD, SALES -

from SALES where MONTH = : nonth

order by MONTH, CGEOCG PROD

if sqlcode ne O

then signal sqglerr 'Cursor declare failed

sql open cl

call prg_nsgs(joi nchars(' Readi ng Sal es, Cursor opened'))
whil e sql code eq O

do

sql fetch cl into : _time, :_geog, :_prod, :_sales
if _geog eq na

t hen goto skip

~cnt = cnt+1 "record counter

if not isvalue(MONTH _tine)

then signal 'BADTIME 'lInvalid time period in READ _SALES
mt GEOG nmerge _geog

mmt PROCD nerge _prod

REC DAY (REC _CNT) = _tine

REC GEOG (REC _cnt) = _geog
REC PROD (REC CNT) = prod
REC SALES(REC _CNT) = _sales

if rem _cnt 5000) eq O

t hen do

updat e

call prg_nsgs(joinchars('Read in ' _cnt ' records in 'seconds-_sec))
mt rec add 5000

doend

ski p:

doend

call prg_msgs(joinchars('Read in '_cnt ' records in'seconds-_sec))
sql close cl

sqgl roll back work

"Move data frombuffers to the real cubes

limt.sortrel =n

oknul | st at us=y

limt TIME to rec_nonth ifnone done

for TIME "For each tine nmenber that has been read into the buffedo

Undocumented Express

limt rec to TIME "Sel ect the nonths records

call prg_nsgs(joinchars('Starting assign of data for ' TIME)
"Sumthe data fromthe buffer into the cube

SALES = total (REC_SALES, REC GEOG REC PROD)

updat e
DATA LOADED(MEASURE ' SALES') =YES "set data | oaded flag for reference

call prg_msgs(joinchars('Finished assign of data for ' MONTH)
updat e

doend

done:

call prg_done

return

error:

sqgl close c1

sql roll back work

signal errorname errortext
return

Custom Functions

Functions are Express routines that take an argument and return aresult. There are hundreds of functions
built into Express and you can expand on that list by writing your own functions. Writing custom functions
IS quite easy in Express.

Formulas alow complex calculations that act on two or more cubes, or act along a dimension. For example,
we can compute variance as ACTUALS-BUDGET and a 3 month moving average as movingaverage(f.
sales, -3, 1, 1).

We can also combine the flexibility of formulas with the power of functions. We can write a function that
performs a more complex calculation than a formula and can assign the function to the formula definition.
For example:

Define F. SALES formul a deci mal <PRCD GEOG TI ME>
Eq f.sales.prg

Df n F. SALES. PRG

Prg

Vrb result dec

"Sinple programto calculate data on the fly
"Data is stored in a different cube DATA SALES, with a relation
"linking PROD to D PROD, GEOG to D GEOG etc.
[imt D PROD to PROD DATA

limt D CGEOCG to GEOG DATA

limt D TINME to TI ME_DATA

Undocumented Express

result = total (DATA SALES, -
DATA PROD PROD DATA GEOG GEOG DATA TI ME Tl ME)

return result
end

Assigning anewly created function to aformula definition is a very useful and powerful technique. It is
critical to note that performance is directly related to the complexity and amount of data the functionis
calculating.

Conjoints

Conjoints were originally developed to control data sparsity. In the 6.x releases of Express, composites
were developed to replace conjoints. While conjoints have slipped away from the developer’ s toolkit, they
still have numerous uses.

Many-to-Many Relations

OLAP applications often require establishing a relationship between two dimensions. Perhaps the most
common is the relationship between a company and its currency for performing exchange rate calculations.
The object to support this might be defined as follows:

defi ne COVPANY_ CURRENCY rel ati on CURRENCY <COVPANY>
Thiswill work aslong as each company has one and only one currency (which is usually the case).
However, if the need for a many-to-many relationship arises, you can create one using a conjoint. For
example, each department could have employees with many titles, and the same titles could be used

throughout the company. While thisisimpossible to create with the standard relation object, with a
conjoint, a many-to-many relationship can be defined like this:

defi ne DEPT_TI TLE di nensi on <DEPT TI TLE>

If you also need to know that titles are valid in a department, the commands are:
limt DEPT to ‘XXX

limt DEPT_TITLE to DEPT
limt TITLE to DEPT_TI TLE

The status of the title dimension contains the valid members for department XX X.
Performance

While composites are the simplest method of controlling data sparsity, conjoints offer greater control and,
In some cases, better performance. While loading data into a conjoint isfairly well documented, Oracle

Undocumented Express

does not document the method to aggregate data along a conjoint. After loading the input level data, the
embedded totals (also known as aggregate levels) and relations for the ROLLUP command still need to be
created and maintained.

Here is a code fragment that will maintain one dimension of a conjoint. To maintain each subsequent
dimension, just repeat the code.

"Define the relationship to rollup the geography di nmension over the |ist of
geogr aphy "hi erarchies

"GEOGPROD is the conjoint, GHis the list of geography hierarchies.

if not exists('GEOG GH ER)

t hen define GEOG GH ER rel ati on GEOGPROD <GEOGPROD G+
for GH "For each CGEOG hierarchy

do
limt CGEOGto all "Select all geographies
while statlen(GEOCG ne 0

do
"Each loop will step up the hierarchy until reaching the top (statlen is
equal to 0)

limt CGEOG renove ancestors using PRNTREL. G
limt GEOGPROD to GEOG "Only | oop over the required geographies

"Add parent level (stored in PRNTREL.G while filling in relationship
mt CGEOGPROD mer ge <PRNTREL. §(GEOG key(GEOGPROD GEOG)) KEY(GEOGPRCD PROD) >

rel ate GEOG GHI ER
"Set status to next level, if statlen equal O then stop, else continue
limt GEOG to PRNTREL. G

doend "statlen ne O | oop
doend "Loop over GH

Y ou can aggregate data over the conjoint by using the conjoint parent-child relationship illustrated below
(use one ROLLUP command for each dimension in the conjoint).

rollup V. SALES over GEOGPROD using GEOG GH ER

If your application requires the additional functionality of composites, but you want to speed up the
aggregation process using conjoints, you can switch back and forth between them quite smply.

Use the CHGDFN command as follows to change from composite to conjoint, and back again:

chgdf n GEOGPROD conposite "Turns GEOGPRCOD to a conposite
chgdf n GEOGPROD di mensi on "Returns GEOGPROD to a di nension

Undocumented Express

One important difference between composites and conjointsis that composites can only be used with
variables. In the example below, any other object dimensioned by GEOGPROD must first be deleted before
issuing the CHGDFN command. For example, after running the conjoint maintenance code above, the
following commands must be issued before changing the conjoint back to a composite:

if exists('CGEOCG GH ER)
then del ete GEOG CGH ER dat abase &obj (dat abase * GECG)
chgdf n GEOGPROD conposite

Leveraging Express

Asyou can see, Express rich stored procedure language can help you devel op creative solutions to awide
range of business problems. By following the tips and techniques summarized in this article, you will be on
your way to taking advantage of Express’ power and flexibility.

	Local Disk
	Undocumented Express

