

Getting Started with ADAPT™

OLAP Database Design

250 Tiburon Boulevard
San Rafael, CA 94901-5244

U.S.A.
Phone: +1 (415) 453-7966
Fax: +1 (415) 453-8043

www.symcorp.com

 Getting Started with ADAPT - 1

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

Getting Started with ADAPT
In this white paper we discuss logical vs. physical data modeling, review currently available
modeling techniques and why they are not appropriate for OLAP, and introduce the basic
elements of ADAPT™ (Application Design for Analytical Processing Technologies). We
explain each of the nine ADAPT database objects and their symbols and illustrate how to use the
symbols with simple examples.

A) Logical vs. Physical Modeling
The goal of a development project is to translate business
needs into a working software system. Logical modeling acts
as a translation layer (fig. 1). Application requirements
become specifications. The specifications are used to
construct a logical model, which is then validated against the
requirements. Once the logical model is completed, work on
the physical implementation begins. A physical model
interprets the logical model based on the strengths and
weaknesses of the chosen software and hardware platforms.
The physical model is also used to create the database schema.
Logical modeling can be thought of as a transformer that
converts business needs into technical implementations.

Tight deadlines and easy to use software can tempt developers
to forego logical modeling and go straight from the application

description directly to the physical implementation. Bypassing logical modeling can result in an
application that reflects the functionality of the chosen software, instead of the functioning of the
business. In a perfect world, logical modeling would take place before the physical architecture
is chosen. The reality is that hardware and software have usually been chosen before the project
begins. Even so, OLAP systems are not so simple and OLAP software is not so good that rigor
should be discarded in favor of expediency. Logical modeling helps ensure a focus on solving
the business needs, regardless of the advantages or shortcomings of a particular implementation
platform.

Physical Model

Database Schema

Specifications

Requirements

Logical Model

Fig. 1 Development Layers

Business Needs

Software System

B) Current techniques
Before we get into details about the ADAPT modeling methodology, let’s briefly examine three
major application categories (transaction processing, data warehouses, and OLAP data marts)
and their applicable modeling techniques.

The purpose of a transaction processing system is to support a business process. To model a
transaction processing system, we need to examine the workflow, which tells us which data
needs to be grouped together and processed as a unit. The data model for transaction processing
is relational tables. Because transactions must be executed as quickly and efficiently as possible,

 Getting Started with ADAPT - 2

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

data redundancy must be reduced as much as possible. The modeling technique of choice for
transaction processing systems is entity-relationship (ER) modeling.

Unlike operational systems, data warehouses are not created to support a business process. Their
purpose is the collection of data from the transaction processing systems into a single coherent
database. In a data warehouse, analysis consists of examining the available data and determining
the best way to organize it. The data warehouse data model is also relational tables, but with a
slightly different slant from transaction processing. Manageability and accessibility of data are
the criteria for success rather than transaction processing speed. The modeling technique of
choice for data warehouses is dimensional modeling.

OLAP data marts provide an analytical environment. Their purpose is to solve business
problems. Instead of starting with the available data to perform analysis, OLAP analysis begins
with an examination of the business problem and works down to the data necessary to solve that
business problem. The data model for OLAP is multidimensional cubes. An OLAP data mart
needs to react quickly to changing business requirements.

Unfortunately, up to now there has been no modeling technique specifically designed to address
the unique needs of OLAP database design. Without success, developers have tried to use the
existing data modeling techniques of ER and dimensional modeling to design OLAP systems.
With ER, designers model entities (tables), attributes (columns), and relationships (foreign keys)
– all elements of relational databases. However, ER provides us with no good way of modeling
hypercubes – the basic building blocks of OLAP databases. In ER, all entities are created equal
and relationships define the associations between entities. Consequently, it can be difficult to
distinguish the business data from the reference data in an ER diagram.

Unlike ER, dimensional modeling divides databases into two types of objects, fact and
dimension tables. Dimension tables are de-normalized. This organization of data makes a
database more understandable from a business perspective and allows a relational DBMS to
execute large scanning queries (typical in a data warehouse) more efficiently. Dimensional
modeling does a better job than ER of giving the model a context, but it does not go far enough
for OLAP data modeling. For example, a dimensional model contains no information as to the
precedence of level within a hierarchy. This lack of context has the undesirable impact of
making it harder to validate the model. The result? Development is more difficult and the
overall quality of the final system is reduced. Without context the meaning is unclear at best.

The most significant technical task of an OLAP system is to function as a calculation engine that
creates derived data. Neither ER nor dimensional modeling has a way of representing the
derivation of computed data. For the most part, computed data is not modeled because the
derivation of data is generally considered a process function rather than a database function. At
this point, it is important to segue briefly into a discussion clarifying the rationale behind this
point of view. Database operations can be divided into the data definition language (DDL) and
the data manipulation language (DML). Until now, data modeling has concerned itself only with
the DDL operations. DML operations have been modeled using process modeling techniques,

 Getting Started with ADAPT - 3

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

generally data flow diagrams (DFD). DFD is procedural in its approach and is used to define the
programming modules required in an application.

The line between data and processing is blurring. Software is getting more sophisticated in how
it treats analytical calculations. More and more of the calculation logic is embedded in the
database and the software itself handles applying that logic to the appropriate data. Particularly
for designing OLAP data marts, the time is right for a new approach to data modeling that
incorporates both data and process.

In addition to a lack of context and no support for derived data, both ER and dimensional
modeling are too closely aligned with the physical model. Although physical modeling certainly
has its place, modeling directly to a physical model skips a crucial step. There is a modeling
step, logical modeling, that should take place between the application definition and
implementation.

Modeling directly to a physical structure forces the designer to think about how to solve the
problem before necessarily understanding the problem. For example, a designer has many
different alternatives for physically implementing a hierarchy, among them are the star schema,
snowflake schema, self-reference, indirect reference, and descendant designs. Which design
should be used depends on the characteristics of the hierarchy and how the application software
operates. The point is that a designer should have a logical understanding of how the hierarchy
represents a business problem before modeling the physical implementation.

Lastly, because ER and dimensional modeling are so closely aligned with a physical
implementation that reflects a relational database approach, they are no help if the
implementation software is a multidimensional database (MDB). The data structures in an MDB
are different than those of an RDBMS. With the growth in MDBs and hybrid OLAP systems
that use a combination of relational and multidimensional software, a modeling technique that is
wired to a specific physical implementation adds very little value.

The need to address the unique concerns of OLAP data modeling and the vacuum of modeling
techniques for OLAP led to the creation of the ADAPT modeling technique for designing OLAP
databases.

C) Core Objects
The basic building blocks of ADAPT are hypercubes and
dimensions, the core objects of the OLAP
multidimensional data model. The symbols used for
these objects are shown in fig. 2. In programming
languages such as BASIC and “C”, a data structure with
no dimensions is called a scalar; with two dimensions, a
matrix; and with three dimensions, a cube. In an OLAP
database, a hypercube is the basic unit of storage for
business data, an array with zero to many dimensions.

Hypercube

Dimension

Fig. 2 Core Objects

Axis or index of Hypercubes

Basic data storage unit, an
n-dimensional array

 Getting Started with ADAPT - 4

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

Because the term “hypercube” is considered too technical for marketing literature, some software
vendors use either the term “measure” or “fact” instead of hypercube when referring to the
business data in an OLAP database. To eliminate confusion in cases where a database contains a
measure dimension, ADAPT uses the term hypercube, or “cube” for short. Likewise ADAPT
avoids using the term “fact” because it is generally associated with fact tables, a term used when
describing the physical implementation of a database.

It is important to clarify that the rules of array manipulation that govern programming languages
such as BASIC and "C" do not apply to OLAP data structures. OLAP does not use the term
“array” to reference its data structure because of significant differences in the rules governing the
definitions of arrays and OLAP multidimensional data structures. In programming terms, two
different three-dimensional arrays are structurally equivalent. In OLAP terms, two different
three-dimensional data structures are only structurally equivalent if their dimensions are the
same. For example, sales as defined by the dimensions time, store, and product are structurally
equivalent to units by time, store, and product. Sales by time, store, and product are not
structurally equivalent to financial actuals by time, unit, and account.

Arrays are indexed by subscripts, whereas OLAP hypercubes are indexed by dimensions.
Subscripts are similar to but not the same as dimensions. A subscript is a positional index into
an array: x[5] yields the fifth element of the vector x. A dimension is a named index into an
OLAP hypercube, e.g., the sales data for the region west (where sales data is in the sales
hypercube and the region west is a geography dimension member). In an OLAP system, you
would never refer to the fifth element of sales.

Now that we’ve defined our core objects, let’s begin designing an application. The first step in
designing an OLAP database is to determine the central hypercubes needed in the application
and their dimensions. Consider a simple sales example for Acme Toy Company. There are three
basic cubes: units, sales, and list price. Units and sales are dimensioned by time, product, and
customer. List price is by time and product. The application has three cubes and three
dimensions. The ADAPT diagram is shown in fig. 3.

Fig. 3 Acme Toy

Time
Product
Customer

Units

Time
Product
Customer

Sales

Time
Product

List Price

Time

Product

Customer

 Getting Started with ADAPT - 5

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

D) Hierarchies
At this point we know nothing about how the dimensions use the data in Acme Toy’s system.
The most basic operation performed on data in an OLAP database is to aggregate it up a
hierarchy. Hierarchies are generally made up of levels. In fig. 4 you can see the ADAPT
symbols for hierarchy and level. Let's say we want to aggregate data along the time dimension
using a standard calendar (fig. 5).

Fig. 5 Calendar Hierarchy

Hierarchy

Level

Fig. 4 Dimensional Aggregation

Set of parent/child member combinations
that define aggregation

Collection of members used to define
hierarchical precedence

{ }

1997

Fig. 6 ADAPT
Calendar Hierarchy

Time

{ } Year

Calendar
Hierarchy

{ } Quarter

{ } Month

Fig. 7 Customer and Product Hierarchies

Product

Product
Hierarchy

{ } Product Group

{ } Product Class

{ } Product Code

Customer

Customer
Hierarchy

{ } Chain

{ } Store

MarFebJan

Q4Q3Q2Q1

Month

Year

Quarter

To draw this using ADAPT, we show a calendar hierarchy off the time dimension with year,
quarter, and month levels within the hierarchy (fig. 6). We use a line with an arrow to show the
calendar hierarchy is of the time dimension. The connectors between the levels show the
precedence of the levels -- months roll up into quarters that roll up into years. Years are the
highest level in the calendar hierarchy.

 Getting Started with ADAPT - 6

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

Acme Toy’s customers are retail chain stores. Each product is assigned a product code and
belongs to a product class (e.g., product code 111 belongs to a product class called baby dolls).
Product classes belong to groups (e.g., baby dolls belong to the doll group). The ADAPT
hierarchies for Acme Toy’s customer and product dimensions are shown in fig. 7.

Now we need to show how these hierarchies are applied to the cubes. The units and sales cubes
can be aggregated along all three dimensions. Fig. 8 shows how the units and sales cubes are
aggregated. The price cube, on the other hand, cannot be aggregated along either the time or the
product dimension. Assume the price of a product was $10.00 from January through August,
and $11.00 from September through December. How do we determine the price of that product
for the year? Different companies use different business rules to determine the prices they use in
OLAP applications. The most straightforward approach is to say that the price for the year is
equal to the price in December. It is equally reasonable to use an average, in this case
calculating a price of $10.33.

Fig. 8 Applying Hierarchies to Cubes

Time
Product
Customer

Units

Calendar
Hierarchy

Product
Hierarchy

Customer
Hierarchy

Time
Product
Customer

Sales

Reviewing a database design diagram that highlights an application’s essentials often leads to the
realization that information is missing. In our case, as we review the time dimension, we are
reminded of the difference between a calendar and a fiscal hierarchy. Our initial design included
only a calendar hierarchy, but the company's fiscal calendar begins in February (fig. 9).

Fig. 9 Calendar and Fiscal Hierarchy

Jan 1997 Mar 1997Feb 1997

Calendar
Q1 1997

Fiscal
Q1 1998

Apr 1997

 Getting Started with ADAPT - 7

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

We need to add a second hierarchy, a fiscal
hierarchy, to the time dimension. The fiscal
hierarchy also made up of months, quarters,
and years. The quarters and years in the
fiscal hierarchy are different from those in the
calendar hierarchy. So that there is no
confusion, the quarters and years in the
calendar hierarchy are renamed to calendar
quarter and calendar year, respectively. A
fiscal hierarchy is added that includes levels
of fiscal quarter and fiscal year. Notice that
both hierarchies (fig. 10) share the month
level, since a month is the same whether it is
part of a calendar or a fiscal hierarchy.

Looking back at the diagrams we have
created so far, we can see that we are starting
to gain a better understanding of our sales
application. We know about the cubes and
dimensions in the application; the hierarchies

of each of the dimensions (including the fact that the time dimension has two hierarchies,
calendar and fiscal); the levels within the hierarchies; and the precedence of those levels. We see
that sales and units are calculated as aggregates and equally important, we are now aware that we
don't know which calculations to apply to list price. In just a few diagrams, we have captured
the essence of the application in a logical description.

Fig. 10 ADAPT Calendar and Fiscal Hierarchy

Time

{ } Calendar
Year

Calendar
Hierarchy

{ } Calendar
Quarter

{ } Month

{ } Fiscal
Year

Fiscal
Hierarchy

{ } Fiscal
Quarter

Whether the final system is implemented using an RDBMS, an MDB, or any other technology is
immaterial to the logical design of the system. We have created a document that can be
discussed and validated, thereby promoting communication. Discovering that the calendar
hierarchy is not the only time hierarchy for the application has improved the correctness of the
model. Adding a fiscal hierarchy to the time dimension has improved the completeness of the
model. The investigation into calculations to apply to list price will create a model that is
consistent. By creating ADAPT diagrams, we have realized the benefits of logical data
modeling: completeness, correctness,
consistency, and communication.

E) Dimension Objects
In order to flesh out the design of our
application, we will need the following
additional ADAPT symbols: member, attribute
and scope (fig. 11). Members, attributes, and
scopes are database objects that are associated
with a dimension and are used to describe a
dimension more fully.

Attribute

Scope

Fig. 11 Other Dimensional Objects

Information about a dimension member

A collection of dimension members

{ }

{ }

Member
An individual dimension value

 Getting Started with ADAPT - 8

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

A member is an individual dimension value. January, 1998 and quarter one of 1998 are
examples of members of a time dimension. California, Oregon, and northwest are members of a
geography dimension. When modeling an OLAP database, you do not need to model all of the
members of every dimension – only those important to understanding the design. A product or
customer dimension can easily have hundreds of thousands of members. Modeling all of them is
neither useful nor practical. However, there are some cases where there are particular
calculations that apply only to certain members or where showing some members increases the
understandability of the diagram. Assume that a U.S. company with global distribution uses
different business metrics for its two territories, North America and international. In this
example, for the geography dimension it will be important to show the territory members, so that
the differences in calculations between territories can be highlighted.

A scope is a collection of dimension members, such as new products or the current year-to-date
months. Scopes allow us to create a subset of database information, particularly useful in
defining calculations, since a calculation does not necessarily apply to all the data in a cube. A
product forecasting system might forecast new products differently than existing products. A
financial system will need to know the year-to-date months and the forecast months to create a
projected total for the current year. Scopes can be either enumerated or derived. The members
of an enumerated scope are explicitly listed and are either manually managed or provided
through an external source. The list of internal services departments in an organization
dimension is an example of an enumerated scope. The members of a derived scope can be
computed from other database objects. For example, the current year-to-date months can be
derived from the current month. Just as with members of a dimension, it is not necessary or
desirable to model all the members of a scope.

An attribute is descriptive information about the members of a dimension. An attribute can be of
any data type. For example, the manager of each organizational entity is a textual attribute and
the number of workdays in each time period is a numeric attribute. A constrained attribute is a
special type of attribute whose values are constrained to a list of values stored in a dimension.
For example, soft drink containers might be constrained to either 16-ounce cans or 32-ounce
bottles.

Now let’s apply these new concepts to the Acme Toy sales analysis application.

F) Dimension Attributes: Sample Case

Fig. 12 Product Description

Product

Product
Description

Let’s check Acme’s dimensions to see what kinds of
attributes are needed. Generally every dimension has
a description attribute. We can immediately add a
product description. Since every product will have a
description, the attribute is hung off the dimension
itself (fig. 12).

There is another product attribute, the Universal Product Code (UPC). The UPCs are not the
same as the product codes assigned by Acme for internal use and must be included in the
database for look up and selection purposes. Unlike the description attribute, the UPC attribute

 Getting Started with ADAPT - 9

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

is only valid for product codes and not for product groups or classes. To illustrate this business
rule, the UPC attribute is hung off the product code level in the hierarchy (fig. 13) rather than the
product dimension itself like the description.

Fig. 13 Product UPC

{ } Product Code

UPC

Acme Toy is interested in other product attributes. Which gender the toy appeals to is an
important product attribute. (Parents may try to be gender neutral, but toy companies do not…)
As far as Acme is concerned, products appeal to either girls or boys or both. Since these are the
only three values that gender can have, this is a constrained attribute. To represent this, we first
create a new dimension called gender. “Girls”, “Boys”, and “Both” are the members of the
gender dimension. We then create a product gender attribute (fig. 14) that is an attribute of both
product and gender. This enables us to communicate that not only is gender associated with a
product, but also there are products that appeal to a specific gender.

Fig. 14 Product Gender Attribute

{ } Product Code Product
Gender Gender

Fig. 15 Product Age Group Attribute

{ } Product Code Product
Age Group

Age

{ } Age Category

Age
Hierarchy

{ } Age Group

Each product Acme
Toy sells has a
recommended age
group: under a year
old, 1 to 3 years,
and so on. While
the age group
attribute is very
similar to the gender
attribute, there is an
added twist. The
age groups are part
of a hierarchy that
combine the age
groups into age

 Getting Started with ADAPT - 10

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

categories, such as infant, child, teen, and adult. To model the age group attribute correctly, we
need to create an age dimension with a hierarchy. There are two levels to the hierarchy: age
category and age group. The product age group attribute hangs off of product code. Unlike
product gender attribute that related product code to the gender dimension, the product age group
attribute relates product code to the level age group (fig. 15). By creating a constrained attribute
between product codes and age group, we can illustrate the relationship between the base
dimension, product, and its property dimension, age.

False assumptions can ruin a database design and its subsequent implementation. Understanding
system constraints is key to clarifying assumptions. The ability to show constraints clearly and
graphically so they can be easily validated is a real strength of ADAPT. Throughout the
examples in this white paper you will see how ADAPT presents the database objects in their
proper context. Showing explicitly how specific objects relate to other objects gives the design
the richest information content, minimizing misunderstandings about the system’s function.

G) Dimension Scopes: Sample Case

Fig. 16 The Flagship Product Scope

{ } Product Class { } Flagship
Classes

Acme Toys wants to track some very
interesting collections of dimension
members. Like many other companies, Acme
has a couple of flagship product classes.
These are products that always generate the
lion’s share of sales. Barbie is a flagship
product for Mattel. 501 Jeans are a flagship product for Levi Strauss. Acme’s product
marketing group evaluates sales in a completely different manner for flagship products. The
flagship products do not have any special designation in the product hierarchy. To track them in
the system, we will need to maintain a list of the so designated products. Dimension scopes are
tailor-made to represent this type of database object. We create a scope off the product class
level (fig. 16). Note that we do not model exactly which classes are flagship classes, only the
fact that there is a special class of products called flagship.

Acme Toys does not treat all of its retailers
the same. Some retailers have joined a
special program sponsored by Acme Toys
and are treated as strategic partners. The
product marketing group wants to track the
retailers in this program to see if the program
is paying off. To model this business requirement, we need to create a scope off the retailer level
of the customer hierarchy (fig. 17).

Fig. 17 The Strategic Partner Scope

{ } Retailer { } Strategic
Partner

Acme Toy wants to use its marketing resources to their best advantage. There is an internal
debate as to whether specialty stores or super-stores are a better channel for its products. Some
representative stores in key markets have been flagged as stores that need to be tracked so that
this issue can be analyzed. Fig. 18 displays the ADAPT diagram. What is interesting to note in
this diagram is that the tracked stores scope has its own scopes, specialty stores and super-stores.
We are showing that the tracked stores are either specialty stores or super-stores. By modeling

 Getting Started with ADAPT - 11

Written by Dan Bulos with Sar ademark of Symmetry
Corporation. Other comp e associated. Other free
business intelligence white papers

this dependency, we have modeled a business rule. The ability to clearly show these types of
business rules is a powerful aspect of ADAPT.

Fig. 18 The Specialty vs. Super-Store Scopes

{ } Store { } Tracked
Stores

{ } Specialty
Stores

{ } Super-Stores

Some of the products Acme sells are considered core products. The core products have other
products associated with them that are accessory products. For example, a doll might be the core
product and the dresses and shoes for the doll, accessory products. Or a racecar set might be the
core product and other cars and scenery, the accessory products. Customers will not buy an
accessory product without first purchasing the core product. It is very important that the brand
managers at Acme Toy be able to analyze the relationship between core and accessory products.
To model this relationship, we create two scopes, core and accessory, off the product code level.
We then create an attribute that relates them (fig. 19). Note the relationship between core and
accessory products. It is a self-relation of product to product, but we have limited the products
that are included. In this case, by increasing the information content of the drawing we make the
business relationship clearer.

Fig. 19 Scopes with an Attribute

Product Code{ }

{ } Accessory
Products{ } Core Products

Core Product
Accessories

The time dimension always has a number of scopes that are important, and interestingly enough,
the scopes tend to be common across applications. Virtually every OLAP application has a
requirement to know current month, last month, and the same month last year (fig. 20). Current
month scope would appear to contain only a single member, so why is current month a scope
instead of a dimension member? Current month is not a distinct value in the time dimension
because the value of current month changes every month. Current month is not a member of the
time dimension -- it just references a member.

ah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a tr
any and product names may be trademarks of the respective companies with which they ar

, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

 Getting Started with ADAPT - 12

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

Fig. 20 Month Scopes

{ } Month

{ } Current Month

{ } Same Month
Last Year

{ } Last Month

The last month and same month last year scopes are different from the other scopes we have
reviewed. So far we have only looked at enumerated scopes, which are either manually
maintained or are lists from external sources. Not only enumerated scopes but also derived
scopes will be important to modeling the application. The last month and the same month last
year are derived from the current month scope and the time hierarchy. Either the calendar or the
fiscal hierarchy can be used -- both produce the same result. (The same month last year is
identical regardless of which hierarchy is used.)

H) Dimension Members: Sample Case
Modeling dimension members is where discretion is the better part of valor in ADAPT. You
want to model enough to adequately describe the system without getting mired in detail. As a
rule of thumb, for most applications the number of members that should be modeled for any
given dimension is under ten and more likely three or four. Let's look at an example in our
application to see where modeling dimension members is useful.

Fig. 21 Gender Dimension

{ } Product Code Product
Gender Gender

{ } Boys

{ } Girls

{ } Both

Let's enhance our model of the product gender attribute (fig. 21). Notice in the drawing that we
have chosen to model the members of the gender dimension. It is important in this case to show
that there are three genders since we would normally assume there are only two. By modeling
the dimension members we can ensure that we do not forget the gender that refers to both boys
and girls.

 Getting Started with ADAPT - 13

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

Fig. 22 Time Variances

{ } Change from
Last Month

{ } Change From
Last Year

Time

{ } Time Variances

We also need to model dimension members
for the time dimension. A standard sales
analysis compares this month with last
month and this month with the same month
last year. We need a place to reference
these calculated results. To do this, we
create two members of the time dimension,
change from last month and change from
last year. To further clarify their
relationship with the time dimension, we
create a scope of time variances and include
the two new members within this scope (fig.
22). Creating a scope of time variances has
the added advantage of grouping like objects together so that they are easier to spot.

I) Other ADAPT Objects
There are only two other ADAPT objects, model and context (fig. 23), completing the set of nine
ADAPT database objects. Applying hierarchies to aggregate cubes is not the only type of
calculation performed in an OLAP application.
Very often we want to apply algebraic
formulas to the data to perform calculations.
We use the ADAPT model object to represent
this. A model can represent a single formula,
as in the case of computing variance between
actuals and budget. A model can also
represent a set of formulas executed together,
as in a financial model.

Context

Model

Fig. 23 Other ADAPT Objects

A portion of a hypercube

An algebraic process that calculates
derived data

The purpose of using the model object is not to document the specific expressions used, but to
document the source and target data for the calculation. While specifying derivation formulas in
detail is critical to the application’s final implementation process, it is not part of the database
design. Detailing the specifics of the formulas as part of the database design can potentially lead
to a quagmire of mathematical equations. Furthermore, overly specifying the formulas during
the database design phase can result in physical implementation issues surfacing sooner than we
would wish. During the database design phase it is important to focus on modeling the business
metrics rather than how to implement the model.

A context is a portion of a cube that provides a context for analysis. This is a very powerful
construct in ADAPT. We do not always use or compute an entire cube in a calculation. Many
times we need to operate on only part of a cube. The use of the context object allows us to
model an operation that applies only to a specific part of the cube. For example, the calculation
of financial reserves for an organization’s international units is likely to be different than a
calculation for domestic units. The profitability of new stores is evaluated differently than
mature stores.

 Getting Started with ADAPT - 14

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

Filtering a cube through one or many scopes creates contexts. A cube can be scoped along any
of its dimensions. More than one scope can be used, even along a single dimension. Filtering a
sales cube through the international scope creates a context of international sales. Further
filtering of the cube though the new products scope creates international new product sales.
Filtering the cube still further though accessory products creates international new accessory
product sales. The purpose of modeling contexts is not to model every possible query subset that
users might request. The purpose is to model those subsets of data that have specialized
processing. It is the exceptions that trip us up in applications development. Contexts help us
recognize and model those exceptions.

J) Model Objects: Sample Case
All standard calculations should be shown in an ADAPT diagram, regardless of how trivial they
might seem. Acme Toy wants to compute average selling price, a very simple calculation --
dollar sales divided by units sold. The reason for showing even such a simple calculation is that
as application developers, we get into trouble by assuming we know what a business user meant.
By showing the model (fig. 24), its inputs and calculation results, we avoid potential
misunderstandings about the application’s requirements and reduce the risk that the application
will perform incorrectly.

The example in fig. 24 shows how to calculate the values in a cube from the values in other
cubes. Sometimes we also want to calculate the values of one dimension member from other
dimension members. Consider the time variances we have already created. These are computed
values. To complete the diagram we should show the model that calculates these members (fig.
25).

Fig. 24 Calculating Average Selling Price

Time
Product
Customer

Units

Time
Product
Customer

Sales

Time
Product
Customer

Average Selling
Price

Calculate
ASP

 Getting Started with ADAPT - 15

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

By clearly showing the objects required and their dependencies, we further ensure that the
application is complete and correct. Without the sales cube in fig. 24, average selling price could
not be computed. Without the current month and last month scopes in fig. 25, variance could not
be computed.

Fig. 25 Time Dimension

Time

{ } Calendar
Year

Calendar
Hierarchy

{ } Calendar
Quarter

{ } Month

{ } Fiscal
Year

Fiscal
Hierarchy

{ } Fiscal
Quarter

{ } Change from
Last Month

{ } Change From
Last Year

{ } Time Variances

{ } Current Month

{ } Same Month
Last Year

{ } Last Month

Variance
Model

K) Context Objects: Sample Case
Acme Toy wants to extend their application to include a forecast. The forecast will use units
sold to project forecasted units. The specifics of the forecast algorithm are not completely
specified at this time but it will probably be based on the compound growth of the current
business. First, we add to our database a forecast cube with time, product, and customer
dimensions. We then create a model to represent the calculation of the forecast and show the
units cube as input and the forecast cube as output. As usual, business analysis is never as
simple as it seems at first glance. Upon further review, we discover that the forecast model is
very different for the flagship products than the rest of the products.

The typical approach to this issue is to change the specifications document and insert many lines
of if-then-else logic into the code. This is not the correct approach. The more the information
about the application is designed as database objects, the more evident the business issues are
and the higher the quality of the application.

 Getting Started with ADAPT - 16

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

To incorporate the new information into our diagram, we create two models, one for the general
forecast and one for the flagship products forecast. To illustrate that the flagship model will only
forecast some of the products, we create a context of the forecast cube. The forecast cube is
filtered through the flagship classes scope to create the flagship forecast context. The destination
of the flagship forecast model is the flagship forecast context, not the main forecast cube (fig.
26). Using ADAPT we can plainly document the exception processing that occurs.

Fig. 26 Forecast

Time
Product
Customer

Units

General
Forecast
Model

Flagship
Products
Forecast

Time
Product
Customer

Forecast

{ } Flagship
Classes

Flagship
Forecast

L) Putting it all together
The drawings in figs. 25 and 27 illustrate all of the information we have collected about the time
and product dimensions for Acme Toy. It is important to note that there are no assumptions
about physical implementation issues such as what type of software will be used or what the
database schema will be. At this point it doesn't matter whether a relational or multidimensional
database will be used. It also doesn't matter how hierarchies will be represented in a relational
database or whether the MDB is a single or multiple cube architecture.

In the example we refer to aggregated sales, average selling price and time variances as
“calculated” values. It is very important to realize the use of the word “calculated” refers only to
what needs to be calculated, not when it needs to be calculated. Whether to calc-and-store or
calc-on-the-fly is not a logical design issue and therefore not an issue that ADAPT addresses.

Once we are sure that the application is correctly designed, we are ready to translate the logical
design into a physical design. It is at the physical design stage where the application designer
considers the specific capabilities of the implementation software. At this point, the designer can
take advantage of the features of the implementation software and overcome any software
deficiencies.

 Getting Started with ADAPT - 17

Product

Product
Hierarchy

{ } Product Group

{ } Product Class

Product Code{ }

{ } Accessory
Products{ } Core Products

Product
Gender Gender

{ } Boys

{ } Girls

{ } Flagship
Classes

Product
Description

UPC

Product
Age Group

Age

{ } Age Category

Age
Hierarchy

{ } Age Group

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

Fig. 27 Product Dimension

Core Product
Accessories { } Both

One of the problems with database diagramming is a general tendency to create extremely large
diagrams. We actually witnessed a case where a client had a data warehouse database design
document that was 5 by 14 feet! It is impossible to look at a multiple foot long diagram and do
anything but have your eyes glaze over. The diagrams need to be reasonably sized, preferably on
separate sheets of notebook-sized paper. We recommend you divide the layout of an ADAPT
diagram into sections, with related objects in the same section. A section for dimensions and one
for cubes is helpful. There should be a page for each of the dimensions. By grouping all the
information about a dimension together, the dimension can easily be reviewed and validated.
The same is true for cubes.

 Getting Started with ADAPT - 18

Written by Dan Bulos with Sarah Forsman. © Copyright 1998-2006 by Dan Bulos. All rights reserved. ADAPT is a trademark of Symmetry
Corporation. Other company and product names may be trademarks of the respective companies with which they are associated. Other free
business intelligence white papers, articles, tips, and tools are available at the Symmetry web site (www.symcorp.com). We welcome you to
bookmark or link to our site.

M) Conclusion
In this white paper we took a brief look at how to get started using ADAPT. We reviewed each
of the nine objects ADAPT uses for a database design and we created diagrams for a simple sales
analysis system. Even though our example was very simple and straightforward, something that
never seems to happen when we do it for real, we saw the richness and value of ADAPT. We
were able to represent an OLAP application in its entirety, without compromising our design as
result of using a modeling technique designed for another purpose. The methodology enhanced,
rather than limited, our ability to illustrate an OLAP database design clearly. With the
information from our diagrams, we were able to locate problem areas and fix them, readily
validating our design.

We saw that perhaps the biggest benefit of ADAPT is enhancing communication. Improved
communication is a major factor contributing to higher quality software applications. It is
impossible to provide a high quality application if you do not understand the business
requirements. As a project team gets larger and the systems become more complex,
communication becomes even more important. ADAPT provides project team members with a
common basis for communication so that design review meetings can center around discussions
on what the system does, rather than on explaining the design itself.

